

A Virtual Impactor for Reducing Particle-Related Artifacts During Mercury Sampling

MSP Corporation
Energy and Environmental Research Center
August 22, 2001

Acknowledgements

- Department of Energy, STTR Grant DE-FG02-99ER86087, Mr. Tony Mayne
- Mr. Dennis Laudal, Mr. Grant Dunham, University of North Dakota, Energy and Environmental Research Center
- Dr. Francisco Romay, MSP Corporation

So What's the Problem?

- Proper understanding of the chemical form of mercury is critical to predicting its behavior in control devices and in the environment
- Particulate matter affects the chemical form of mercury (elemental converts to oxidized; possibly oxidized converts to elemental)
- How does one get a representative sample to a real-time analyzer with the particle loading typical of coal-fired power plants?

- Filter packed bed of accumulating particles
- Cyclone particles accumulate in base; intense swirl of particles with gas before disengagement
- Electrostatic collector possible but particles accumulate still
- Cascade impactor gas passes over accumulated particles

The Virtual Impactor Option The Virtual Impactor Option

Power consumption reduced by "n" to the two-thirds power

 Particles decelerate in free space, reducing wall losses

Overall Sampling Scheme

Attachment of Sampler

Close-Up of Sampler

Flow Inside OJ-VI

Nozzle Arrangement in Sampler

First-Stage Nozzle Flows

Second-Stage Nozzle Flow

Reject Gas Flow Method

Nozzle Details

Cut Point (µm)	Diameter of Acceleration Nozzle (mm)	Diameter of Receiving Tube (mm)	Design Pressure Drop (inches of water)
0.5	1.43	2.00	76
1.0	1.91	2.67	8.6
2.0	2.92	4.09	1.6

Monodisperse Particle Behavior

Test Program at EERC

- Synthetic Flue Gas particles, HCl, NO, NO₂, water, SO₂
- Either Hg^o or HgCl₂ at 7.5 μg of mercury per m³
- 300°F; 2 grains/ft³ particles (4.5 g/m³)

Fly Ash Particle Behavior

Stability of Hg^o – Two-Stage

Conversion Across M-5 Filter

Stability of Hg^o – Single Stage

Stability of HgCl₂

Future Work

Longevity in Field Use

Backpulsing for cleaning

Field-able test unit

Pilot and Field Testing

Revised Sampler with BackPulse Air Capability

Sampler Module

Inside of Sampler Module

Side View, Pump in Back

